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Field Theory of Critical Behavior in Driven Diffusive
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We present a field-theoretic renormalization-group study for the critical
behavior of a uniformly driven diffusive system with quenched disorder, which
is modeled by different kinds of potential barriers between sites. Due to their
symmetry properties, these different realizations of the random potential
barriers lead to three different models for the phase transition to transverse
order and to one model for the phase transition to longitudinal order all belong-
ing to distinct universality classes. In these four models, which have different
upper critical dimensions dc , we find the critical scaling behavior of the vertex
functions in spatial dimensions d<dc . The deviation from purely diffusive
behavior is characterized by the anomaly exponent ', which we calculate at first
and second order, respectively, in ==dc&d. In each model ' turns out to be
positive, which means superdiffusive spread of density fluctuations in the driving
force direction.

KEY WORDS: Driven diffusive systems; nonequilibrium steady states; lattice
gas; phase transitions; field-theoretic renormalization group; quenched disorder.

1. INTRODUCTION

For more than a decade the long-time and critical behaviour of diffusive
systems subjected to a driving force has attracted considerable interest.
This is mainly caused by the richness of their highly nontrivial features
which generically result from the fact that, due to the driving force, in
general even the steady states of these systems are far from thermal equi-
librium, especially in the case of very strong driving forces. Further, driven
diffusive systems might be suitable models for fast ionic conductors which
was first suggested by Katz, Lebowitz, and Spohn.(1, 2) A review of the
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different investigations on driven diffusive systems and their relations to
other non-equilibrium systems is given by Schmittmann and Zia.(3)

We are interested in the diffusive motion of uniformly driven particles
with short range attractive interactions and hardcore repulsion. With such
an interaction driven diffusive systems show two kinds of phase transitions.
At the transverse (with respect to the driving force E) phase transition the
system changes from a disordered state to an ordered one where the system
is ordered in the transverse direction and remains disordered in the
longitudinal (parallel to the driving force) direction. The typical configura-
tions are strips of high- and low-density phase, arranged parallel to the
driving force E (Fig. 1(a)). At the longitudinal phase transition the systems
changes from a disordered state to a state where the system is ordered in
the longitudinal direction and remains disordered in the transverse direc-
tions. Here the typical configurations are domains (``pancakes'') of different
phase with interfaces perpendicular to the driving force (Fig. 1(b)). In
preceding papers the long-time and critical behaviour of driven diffusion in
an ordered medium(4�6) and the long-time behaviour of driven diffusion in
a medium with quenched disorder(7) have been investigated by renor-
malized field theory. In the present paper we study the effect of quenched
disorder on the two kinds of phase transitions in driven diffusive systems.
Quenched disorder is important in real systems, as it models impurities and
defects. We stress that this work completes the investigations of a whole
model class that is graphically shown in the summary (Fig. 3). Note that
the effects of quenched disorder in randomly driven diffusive systems were
recently analyzed.(8, 9) There the driving force is itself a locally random
variable with respect to its amplitude and sign, whereas here the driving
force is uniform.

The paper is organized as follows: In Section 2 we set up a Langevin
description of our system, directly on a mesoscopic length scale using

Fig. 1. Typical configurations of transverse (a) and longitudinal (b) ordered phase. Regions
of high density are shaded.
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conservation laws and symmetry arguments. The quenched disorder is
modelled by random potential barriers between sites, and the symmetry
properties of the random potential play a crucial role. Different realizations
of the random potential are possible and are argued to lead to different
kinds of noise. In Section 3 we study the transverse phase transition in
the convenient formalism of the dynamic functional. In Section 4 the
longitudinal phase transition is analyzed. Section 5 contains the main
results and a graphical overview of the entire model class.

2. MODEL BUILDING

The configurations of a driven diffusive system with homogenous
driving force are fully characterized by a single conserved scalar field, i.e.,
the local particle density n(r, t). As the particle number is conserved the
order parameter for both phase transitions is the deviation of the actual
density n(r, t) from its uniform average n0 :

s(r, t)=n(r, t)&n0 (1)

This fluctuating variable satisfies a continuity equation

s* +{ } j=0 (2)

where the current density j consists of a deterministic and a random part.
The resulting stochastic differential equation is a Langevin equation. First
we model the deterministic part. Due to the anisotropy of the system
caused by the driving force, j shows different symmetries longitudinal and
transverse to its direction. Henceforth the indices & and = denote the
spatial direction longitudinal to the driving force and the (d&1)-dimen-
sional subspace transverse to it, respectively. The transverse current is
according to

j==&*{=+= (3)

caused by a chemical potential += with * being a kinetic coefficient. As no
direction is selected in the (d&1)-dimensional subspace the transverse
current j= is isotropic and therefore a vector of the form

j=={= f (s, 2= ,{ | |) (4)

where the Laplacean 2= as argument denotes an even number of {= -oper-
ators in every term of f. An expansion of f with respect to s and gradient-
operators yields, up to higher order terms

j=={=(s+s2+2= s+{ | | s+2 | | s) (5)
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where here and in the following equations coefficients are suppressed for
the sake of simplicity.

The longitudinal current, however, possesses no symmetry, due to the
driving force. As a scalar it can be written as

j | |= g(s,{ | | , 2=) (6)

where the isotropy of the transverse subspace is again taken into account
by the even number of {= -operators. Its expansion up to higher order
terms reads

j | |=c+s+s2+{ | | s+{2
| | s+{3

| | s+{ | | s2+2= s+{ | |2=s (7)

While some terms in this equation originate in a chemical potential + | | ,
according to

j | |=&*{ | | + | | (8)

others are due to the driving force E, which at least produces the terms
proportional to c, s, s2, and 2= s and which, in principle, also contributes
to all terms of the longitudinal current in (7). Here, the constant c is the
homogeneous part of the current, and s2 is the first nonlinear term of the
longitudinal current and so the leading nonlinearity of the problem.

Note that a repeated coarse graining of a microscopic model typically
generates anisotropic transport coefficients. Building here a model directly
on a mesoscopic length scale we must take that into consideration. Thus,
although containing the same terms, + | | and += in general have different
coefficients, due to the anisotropy. From a technical point of view
anisotropic transport coefficients are required to make the model renor-
malizable.

Following microscopic models and simulations(1, 2, 10�12) we restrict
ourselves to such models which additionally hold a CP (charge and
parity)-symmetry, i.e., in which the Langevin equation is invariant under
the transformation

s(r | | , r= , t) � &s(&r | | , r= , t) (9)

In microscopic lattice models which also form the basis for Monte Carlo
simulations of driven diffusive systems the PC-symmetry corresponds to
the particle-hole symmetry in the half-filled system.

In models with PC-symmetry all terms from (5) and (7) vanish whose
sum of s- and { | | -factors in the Langevin equation is even.
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The stochastic part of the Langevin equation `=&{ } jL reflects a ran-
dom current jL that summarizes the fast microscopic degrees of freedom
(local in time in our Markovian continuum description) and the effects of
the quenched disorder of the medium. After writing down the general form
of the Langevin equation we show how to model the various possibilities
of quenched disorder and which parts of the noise are relevant in the renor-
malization group sense. Note that the noise considered here is conserving,
i.e., it satisfies the continuity equation. We mention that we have also
analyzed driven diffusive systems with nonconserving noise that is caused
by random particle sources. (13, 14) Taking anisotropic transport coefficients
into account we obtain the Langevin equation

s* =*[2=({=&}=2=)+\2 | |({ | |&} | |2 | | )&}2=2 | |] s

+ 1
2*g{ | | s2&{ } jL (10)

This constitutes the fundamental equation for driven diffusive systems with
homogenous driving force, attractive interactions, CP-symmetry and
conserving noise. It contains all terms which are relevant in the renor-
malization group sense for the two phase transitions and the noncritical
disordered phase, but in each case it still contains irrelevant terms which
must be eliminated by a dimensional analysis.

We proceed by investigating the influence of the quenched disorder in
detail. In a microscopic driven lattice gas model the quenched disorder is
modelled by random potential barriers between the sites. There are three
possible realizations of their randomness which is depicted for one dimen-
sional systems in Fig. 2.

(I) The particles are in randomly deep potential valleys that are
separated by randomly high potential mountains (Fig. 2(a)).

(II) The potential valleys are randomly deep, the potential moun-
tains are equally high (Fig. 2(b)).

(III) The potential mountains are randomly high, but the potential
valleys are equally deep (Fig. 2(c)).

The homogeneous driving force tilts this landscape in the longitudinal
direction by an angle that depends on its strength. Thus in this direction
the symmetry of the random potential in the realizations II and III is
broken, whereas the symmetries in the transverse subspace are not affected.
Hence in the driving force direction the random potential is unsymmetric
in all realizations.

In the microscopic lattice gas model particles can only jump to neigh-
bouring unoccupied sites with jump rates that depend on the external driv-
ing force, on the energetic situation of the particles due to their attractive
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Fig. 2. (a) Unsymmetric random potential, (b) random potential with equally high moun-
tains, and (c) random potential with equally deep valleys.

interaction, and on the locally random height of the potential barriers
between the sites. Performing a continuum limit of the microscopic model
one can show that, first, the main effect of the quenched disorder results in
a time-independent random current with zero mean and Gaussian fluctua-
tions and that, second, the three different realizations of the random potential
produce three different types of such a random current `d (r).

In the unsymmetric case (realization I) the correlations of the random
current are given by

(`d (r)) =0
(11)

(`d (r)�`d (r$)) =2*2$(r&r$)[_e | | �e | | +#(1&e | | �e | |)]
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Thus the correlations of the noise force { } `d read

({ } `d (r)) =0
(12)

({ } `d (r) { } `(r$)) =&2*2(#2=+_2 | |) $(r&r$)

By a suitable scale change of s the kinetic coefficient * in Eq. (12) is the
same as in Eq. (10). The anisotropy of the system due to the driving force
is taken into account here by the transport coefficients # and _.

In realization II a particle at a given site sees equally high potential
barriers in all transverse directions. As a consequence of this symmetry the
random current in the transverse subspace vanishes in the lowest order and
starts with a local gradient. The correlations of the random current are
here given by

({ } `(r) { } `(r$))=&2*2(&:22
=+_2 | | ) $(r&r$) (13)

As the symmetry of the random potential is broken by the driving force in
the longitudinal direction the longitudinal random current behaves as in
the unsymmetric case.

In realization III a potential barrier looks the same from both sides
in the transverse subspace. This is why the transverse random current
vanishes totally. Being only longitudinal the random current has the
correlations

({ } `(r) { } `(r$))=&2*2_2 | | $(r&r$) (14)

Since the continuum limit of the microscopic model is not rigorous, it
might be possible that even in the symmetric realizations II and III trans-
verse noise terms with :{0 and #{0, respectively, are generated by the
coarse graining procedure. This is due to the fact that the symmetry of the
random potential is microscopic and concerns only a single site or bond.
As we will see later each type of noise nevertheless leads to different critical
behaviour governed by different stable fixed points with finite regions of
attraction. We defer the discussion of the possible additional transverse
noise terms until the end of the Sections 3.2 and 3.3, respectively.

By dimensional considerations (power counting) one can prove that
each of the Eqs. (12)�(14) contains all relevant noise terms in the renor-
malization group sense for the respective type of the random potential.
Also deviations from the local Gaussian nature of the random current ` are
irrelevant for the critical and long-time properties. Even the microscopic
part `m of the random current summarizing the fast microscopic degrees of
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freedom is irrelevant if `d{0. It should be remarked that `m plays the role
of a dangerous irrelevant field for the calculation of correlation functions
with frequencies |{0. Without `m correlation functions show only a ``cen-
tral peak'' at |=0.

3. TRANSVERSE PHASE TRANSITION

In the following all models are analyzed with the help of renormalized
field theory. This method has successfully been applied to all driven
diffusive models investigated so far. The three different realizations of the
random potential described in the last section actually lead to three dif-
ferent models for the transverse phase transition and have to be treated
separately.

3.1. Unsymmetric Random Potential

The model for a driven diffusive system with frozen random unsym-
metric potential is based on the Eqs. (10) and (12).

To set up a renormalized field theory, it is convenient to recast the
model in terms of a dynamic functional(15�20)

J[s, s~ ]=| d dr {| dt[s~ (s* +*(2=(}= 2=&{=)

+\2 | |(} | | 2 | |&{ | |)+}2= 2 | |) s)+ 1
2*g({ | | s~ ) s2]

&# _* | dt {= s~ &
2

&_ _* | dt { | | s~ &
2

= (15)

where s~ (r, t) is a Martin�Siggia�Rose(21) response field. Correlation and
response functions can now be expressed as functional averages with weight
exp(&J).

But for the description of the transverse phase transition this dynamic
functional still contains irrelevant terms in the renormalization group sense.
Now these terms are determined by a dimensional analysis.

The transverse phase transition is characterized by finite { | | and
{= � 0. We introduce a scale +2 for small {= . Then +&1 is a convenient
length scale. Since {= tends to 0 at the transverse phase transition, the
leading term in the transverse direction is proportional to s~ *2= }=2= s,
whereas in the longitudinal direction the leading gradient term is propor-
tional to s~ *\2 | | { | | s. The comparison of the leading gradient terms
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demonstrates that 2 | | scales as 22
= . For longitudinal and transverse length

scales, this implies

r=t+&1 r | |t+&2 (16)

Since the dynamic functional is dimensionless the dimensions of fields and
coupling constants are

*tt+&4 st+(d&5)�2 s~ t+(d+7)�2

} | |t+&4 }t+&2 _t+&2 (17)

#t+0 gt+(9&d )�2

i.e., the coupling constants } | | , }, and _ are irrelevant in the renormaliza-
tion group sense. The irrelevancy of _ indicates that for the transverse
phase transition in a unsymmetric random potential the noise in the
driving force direction is irrelevant. From the dimension of the nonlinear
coupling constant g we recognize

dc=9 (18)

as upper critical dimension of this model, above which g is irrelevant and
below which g is relevant. The finite { | | and the transverse coupling con-
stants are absorbed into lengths and fields by a suitable scale change. Thus,
the appropriate dynamic functional to describe the transverse phase transi-
tion in a driven diffusive system with an unsymmetric random potential is
given by

J[s, s~ ]=| d dr {| dt[s~ s* +*s~ (2=(2=&{=)&\2 | |) s+ 1
2*g({ | | s~ ) s2]

&_* | dt {= s~ &
2

= (19)

The dynamic functional has the following symmetries. The isotropy in the
transverse subspace and the CP-symmetry that reads here

r | | � &r | | s � &s s~ � &s~ (20)

were directly integrated in the model building. After averaging over the
quenched disorder, J exhibits translational symmetry in space and time.
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The invariance of J under the longitudinal scale transformation

r | | � ;r | | r= � r=

s~ � ;&1�2s~ s � ;&1�2s (21)

\ � ;2\ g � ;3�2g

is of great importance, because the parameter combination g2\&3�2 is found
as appropriate variable of the model being invariant under this transforma-
tion. In contrast to the corresponding model without quenched disorder(5)

the dynamic functional is here not invariant under a Galilei transformation.
To study the critical properties of the transverse phase transition we

apply standard renormalization group methods.(19, 20, 22) We use dimen-
sional regularization in d=9&= followed by minimal subtraction. The one-
line-irreducible vertex functions with n~ | s~ -legs and n | s-legs at wavevectors
[q] and frequencies [|] will be denoted by 1n~ , n([q], [|]). Taking into
consideration the causality properties of the theory we only find 11, 1 and
11, 2 primitively divergent. The nontrivial diagrams contributing to
1n~ , n([q], [|]) carry at least a factor qn~

| | , because the interaction vertex is
conserving. The primitive divergences are multiplicatively absorbed in a
redefinition of the parameters

\ � \# =Z\ \, g � g# =+=�2Zuu (22)

Here, in contrast to the ordered problem, (5) the coupling constant g has to
be renormalized, due to the loss of Galilean invariance in the disordered
problem.

The elements of our perturbation expansion are the Gaussian
propagator

Gq, | :=(s~ q, | s&q, &|) 0=
1

i|+*[q2
=(q2

=+{=)+\q2
| |]

(23)

the Gaussian correlator

Cq, | :=(sq, |s&q, &|) 0=
2*2q2

= $(|)
|2+*2[q2

=(q2
=+{=)+\q2

| |]
2 (24)

and the conserving vertex v(q)=&i*gq | | . Their graphical representation is
shown in the Appendix in Fig. (4).

As the correlator of the theory Cq, | , is proportional to $(|) (i.e.,
Cq(t) is independent of time) and any loop of a diagram contains at least
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one correlator because of the structure of the vertex with two s-legs and
one s~ -leg and because of causality the integration over internal frequencies
cannot generate any divergences. Thus the divergent parts of the vertex
functions are only in the (|=0)-parts. To facilitate their calculation it is
convenient to split the order parameter

s(r, t)=.(r)+s$(r, t) (25)

into a time independent .(r) and a time dependent s$(r, t) that contains no
(|=0)-parts. Since the noise is independent of time s$(r, t) relaxes deter-
ministically. In the limit of long times we obtain

s(r, t � �)=.(r) (26)

Together with

.~ (r)=* | dt s~ (r, t) (27)

the dynamic functional J reduces to a quasi-static (frozen) Hamiltonian

H[., .~ ]=| d dr[.~ (2=(2=&{=)&\2 | | ) .+ 1
2 g({ | | .~ ) .2+.~ 2= .~ ] (28)

The frozen Hamiltonian generates all the zero-frequency parts of the vertex
functions if causality is included in the graphical rules of perturbation
theory. In the quasi-static model the Gaussian propagator and correlator
are only dependent on wavevectors and read

Gq=
1

q2
=(q2

=+{=)+\q2
| |

(29)

Cq=
2q2

=

[q2
=(q2

=+{=)+\q2
| |]

2

In the quasi-static model we calculate the primitively divergent vertex func-
tions in two-loop order. While the one-loop calculation is easy to perform
analytically, technical difficulties have to be overcome for the two-loop
diagrams with mixed q4-propagators and -correlators. These two-loop
diagrams have here been solved by a new technique where a special inverse
Mellin transformation is used to factorize the denominators of some
propagators and correlators, respectively. Thus, the =2-poles and the simple
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=-poles can be extracted. Their coefficients are then given by parameter
integrations over paths in the complex plane. Whereas the coefficients of
the =2-poles can be analytically calculated, those of the simple =-poles have
to be computed numerically. The details of the two-loop calculation are
shown in the Appendix.

In a two-loop calculation using dimensional regularization we obtain
the vertex functions in an expansion in ==dc&d and q

11 1, 1(q)=q2
=(q2

=+{=)+\# q2
| |+

2
3

A=

=
g# 2

\# 1�2 q2
| | {

&=�2
=

&
2
9

A2
=

=2

g# 4

\# 2 q2
| | {

&=
= (1&0.2158=)

(30)

11 1, 2(q)=ig# q | |&i
1
6

A=

=
g# 3

\# 3�2 q | | {&=�2
= +

1
8

i
A2

=

=2

g# 5

\# 3 q | | {&=
= (1&0.2154=)

where bare unrenormalized parameters are indicated by a superscript ``% ''
above the symbol. A==(1�(2?)d ) Od&1 1 (1+(=�2)) 1 ((5&=)�2) 1 ( 1

2) is a
suitably chosen constant with Od&1 being the surface of the (d&1)-dimen-
sional unit sphere and 1 (z) denoting Euler's 1-function. The Z-factors
defined in Eq. (22) are in minimal subtraction

Z\=1&
2
3=

A=
u2

\3�2&
2

9=2 A2
=

u4

\3 (1+0.2158=)+O(u6)

(31)

Zu=1+
1
6=

A=
u2

\3�2+
1

8=2 A2
=

u4

\3 (1+0.2154=)+O(u6)

We recognize that the perturbation expansion is organized in powers of the
dimensionless renormalized parameter combination v :=A=u2\&3�2 that
was already found as invariant variable under the longitudinal scale trans-
formation (Eq. (21)).

With the renormalization at hand we are in a position to determine
the critical behaviour of the vertex functions. We use the fact that the
unrenormalized theory is independent of the momentum scale +. This leads
to the renormalization group equation

_;v
�
�v

+\`
�

�\
++

�
�+& 1n~ , n([q | | , q=], {= , v, \, +)=0 (32)

828 Becker and Janssen



The Wilson parameter functions, being only dependent on v, are given by

;v :=+
�v
�+ } 0 =&v \=&

4
3

v&0.252v2+O(v3)+
(33)

` :=+
� ln \

�+ }0 =&
2
3

v&0.0959v2+O(v3)

where the derivatives are calculated at fixed bare parameters. As a linear
partial differential equation the renormalization group equation is solvable
by the method of characteristics with the result

1n~ , n([q | | , q=], {= , v, \, +)=1n~ , n([q | | , q=], {= , v� (l ), \� (l ), +� (l )) (34)

The trajectories v� (l ), \� (l ), and +� (l ) are solutions of the flow equations

l
d
dl

v� (l )=;v(v� (l )) l
d
dl

ln \� (l )=`(v� (l )) l
d
dl

+� (l )=+� (l ) (35)

with the flow parameter l and the initial conditions

v� (l=1)=v \� (l=1)=\ +� (l=1)=+ (36)

The third flow equation obviously has the solution +� (l )=+l.
With the help of characteristics the critical asymptotic region of small

{= and q can be mapped onto uncritical regions. In the scaling limit l<<1
corresponding to

}q | |

+2 }<<1 } q=

+ }<<1 } {=

+2 }<<1 (37)

the flow of v� (l ) is controlled by stable zeroes of ;v . For =>0, there is a
nontrivial infrared stable fixed point

v
*

= 3
4 (=&0.141=2+O(=3)) (38)

The other fixed point v
*

=0 being Gaussian is stable only if =<0.
From the nontrivial fixed point value `(v

*
) we define the anomaly

exponent ' := & 1
2`(v

*
) that is to two-loop order

'=
1
4

= \1&0.302
=
9

+O(=2)+ (39)
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At the fixed point the solution of the second flow equation of Eq. (35) is

\� (l )=\l &2' (40)

The results found for the vertex functions in the quasi-static model can be
directly transferred into the dynamic model because the time scale * needs
no renormalization.

The longitudinal length scale transformation according to Eq. (21),
dimensional analysis and the renormalization group equation are now
combined to derive the asymptotic critical scaling form of the vertex func-
tions in the dynamic model at the transverse phase transition

1n~ , n([q | | , q= , |], {= , v
*

, *, \, +)

=l &1�2'(n~ +n&2)&1�2n~ (d+7)&1�2n(d&5)+d+5

_1n~ , n \{ q | |

l 2+' ,
q=

l
,

|
l 4= ,

{=

l 2 , v
*

, *, \, ++ (41)

This equation implies that, below the upper critical dimension dc=9,
anomalous scaling behaviour only occurs in the direction of the driving
force and is completely characterized by the anomaly exponent ' from (39)
that is positive. These results are in analogy to what was found in the
driven diffusive systems investigated so far.(4, 5, 7, 13)

To illustrate the importance of the positive anomaly exponent ' we
especially investigate the density response function /(q, t) which is the
Fourier transform of 1 &1

1, 1(q, |). Choosing the flow parameter l=|1�4<<1,
we derive the scaling form of the density response function /(q, t) :=
(s(q, t) s~ (&q, 0)) from Eq. (41):

/(q, t)= f (q2
| | t

1+1�2', q2
=t1�2) (42)

From that we conclude that for long times typical longitudinal length-
squares scale with time as

(r2
| |)tt1+1�2' (43)

The positivity of '= 1
4=(1&0.302=�9+O(=2)) means that in systems with

spatial dimensions d<dc=9 fluctuations spread faster than diffusively in
the driving force direction. This superdiffusion was also observed in all
driven diffusive systems analyzed up to now.(4, 5, 7, 13)

A comparison with the corresponding model for the transverse phase
transition without quenched disorder, having an upper critical dimension
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dc=5, shows that the phenomenon of superdiffusion occurs here over a
much greater dimensional range. As the system without quenched disorder
behaves normally diffusive for d>5 it follows that quenched disorder is the
reason for superdiffusion in the dimensional interval 5<d<9.

The analogous comparison of the models with and without disorder
for the noncritical region(4, 7) came to an analogous result.

Another consequence from the scaling form of the density response
function is that typical transverse length-squares scale as (r2

=) tt1�2 for
long times, i.e., subdiffusively. This behaviour corresponds to the naive
dynamical exponent z=4 in model B (in the nomenclature of Halperin and
Hohenberg(23)) and has been expected, for the system here is critical with
respect to the transverse directions and no renormalizations are necessary
in this subspace. The extrapolation of the anomaly-exponent ' into low
dimensions is difficult in view of the high upper critical dimension dc=9.
Naively, we can simply set ==dc&d=6 in Eq. (39) to predict ' f.e. in a
3-dimensional system, resulting in an estimate

'(d=3)=1.20 (44)

Although = has been considered as small quantity the two loop-correction
with respect to the one-loop result is merely 200, even at ==6. Due to
these small corrections we expect that Eq. (39), even though it is strictly
valid only near dc=9, produces good approximations for ' also in low
dimensions.

3.2. Random Potential with Equally High Potential Mountains

This model is analyzed in analogy to the model with unsymmetric ran-
dom potential of the last section. The quenched disorder according to
Eq. (13) resulting from the random potential with equally high potential
mountains leads in analogy to Eq. (15), to the dynamic functional

J[s, s~ ]=| d dr {| dt[s~ (s* +*(2=(}= 2=&{=)

+\2 | |(} | | 2 | |&{ | |)+}2= 2 | |) s)+ 1
2*g({ | | s~ ) s2]

&: _* | dt 2= s~ &
2

&_ _* | dt { | | s~ &
2

= (45)

that still contains irrelevant terms to be eliminated. Transverse and
longitudinal lengths scale as before r=t+&1, r | |t+&2. Since the dynamic
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functional is dimensionless the dimension of fields and coupling constants
are

*tt+&4 st+(d&3)�2 s~ t+(d+5)�2

} | |t+&4 }t+&2 _t+0 (46)

:t+0 gt+ (7&d )�2

Thus, the coupling constants } | | and } are again irrelevant in the renor-
malization group sense, but _ is not. This signifies that in the given random
potential both longitudinal and transverse noise are relevant. The dimen-
sion of the nonlinear coupling g shows that

dc=7 (47)

is the upper critical dimension of this model. The finite { | | and the trans-
verse coupling constants : and }= are again absorbed by a suitable scale
change. Thus, the appropriate dynamic functional for the transverse phase
transition in the given random potential is

J[s, s~ ]=| d dr {| dt[s~ s* +*s~ (2=(2=&{=)&\2 | |) s+ 1
2*g({ | | s~ ) s2]

&_* | dt 2= s~ &
2

&_ _* | dt { | | s~ &
2

= (48)

This dynamic functional exhibits the same symmetries as the one in the
case of the unsymmetric random potential, except the longitudinal scale
transformation, where here the parameter _ is additionally transformed
according to _ � ;2_. In addition to the parameter combination g2\&3�2,
_\&1 is also an invariant variable of this model and the perturbation
expansion will be organized in powers of both variables.

Due to the quenched disorder, the Gaussian correlator is again time
independent so that, for simplicity, we also here transform J into a quasi-
static Hamiltonian via (26) and (27)

H[., .~ ]=| d dr[.~ (2=(2=&{=)&\2 | |) .+ 1
2 g({ | | .~ ) .2

+.~ (&22
=+_2 | |) .~ ] (49)
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In comparison with the former model the vertex and the Gaussian
propagator remain the same (29), whereas the Gaussian correlator of the
quasistatic model reads

Cq=
2(q4

=+_q2
| |)

[q2
=(q2

=+{=)+\q2
| |]

2 (50)

By dimensional analysis taking into account the causality properties we
find the vertex functions 11, 1 , 12, 0 , and 11, 2 primitively divergent. Neglect-
ing higher orders in q and ==dc&d, a one-loop calculation for these vertex
functions, with dimensional regularization, results in

11 1, 1(q)=q2
=(q2

=+{=)+\# q2
| |+

B=

=
g# 2

\# 1�2 q2
| | {&=�2

=

11 2, 0(q)=2q4
=&2_# q2

| |&
1
4

B=

=
g# 2

\# 1�2 q2
| | {

&=�2
= \5+2

_#
\#

+\_#
\# +

2

+ (51)

11 1, 2(q)=ig# q | |&i
1
4

B=

=
g# 3

\# 3�2 q | | {&=�2
= \1+

_#
\# +

where

B==
1

(2?)d Od&11 \1+
=
2+ 1 \3&=

2 + 1 \1
2+ (52)

is a suitably chosen =-dependent factor. Notice that although not performed
a two-loop calculation could here also be done with the method described
in the Appendix.

The primitive divergences are absorbed in the redefinition of the
parameters

\# =Z\\, _# =Z__, g# =+=�2Zuu (53)

In comparison to the latter model the coupling constant _# has additionally
to be renormalized. From Eq. (51) we easily obtain the Z-Factors in mini-
mal subtraction

Z\=1&
v
=
+O(v2)

Z_=1&
1
8

v
=

1
w

(5+2w+w2)+O(v2) (54)

Zu=1+
1
4

v
=

(1+w)+O(v2)
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expressed as functions of the dimensionless renormalized parameters v :=
B=u2\&3�2 and w :=_\&1 that are invariant under the longitudinal scale
transformation.

In analogy to the former model we obtain the renormalization group
equation

_;v
�
�v

+;w
�

�w
+\`

�
�\

++
�

�+& 1n~ , n([q | | , q=], {= , v, w, \, +)=0 (55)

with the parameter functions depending on v and w

;v :=+
�v
�+ } 0 =&v _=&

1
2

v(4+w)+O(v2)&
;w :=+

�w
�+ } 0 =&

1
8

v[5&6w+w2]+O(v2) (56)

` :=+
� ln \

�+ } 0 =&v+O(v2)

The associated characteristics are defined by

l
d
dl

v� (l )=;v(v� (l ), w� (l )) l
d
dl

ln \� (l )=`(v� (l ), w� (l ))

(57)

l
d
dl

w� (l )=;w(v� (l ), w� (l )) l
d
dl

+� (l )=+� (l )

with the initial condition w� (l=1)=w and the initial conditions from
Eq. (36). In the scaling limit l<<1, v� (l ) and w� (l ) flow to an infrared stable
fixed point (v

*
, w

*
) given by the zeroes of ;v and ;w , with a positive

gradient. The zeroes of ;w , in this order are

w1=1 w2=5 (58)

and those of ;v

v1=0 v2=
2=

4+w
(59)

This yields the infrared stable fixed point

w
*

=1+O(=) v
*

= 2
5=+O(=2) (60)
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The domain of attraction of this fixed point can easily be recognized as

v>0 w<5+O(=) (61)

In the case w>5+O(=) the critical behaviour of the system is dominated
by the degenerate fixed point

w
*

=� v
*

=0 (62)

Concerning this degenerate fixed point we remark the following:

(i) For w � � the transverse noise vanishes in comparison to the
longitudinal one. This can be seen easily by substituting \q2

| | � q2
|| and

extracting _\&1=w from the correlator. Then the remaining coefficient of
the longitudinal part in the numerator of the correlator is 1, the coefficient
of the transverse part is w&1. At the degenerate fixed point, this system here
behaves as the model with a random potential with equally deep potential
valleys and whose noise is therefore given by Eq. (14). This model is
analyzed in the next section, but we anticipate some results concerning the
degenerate fixed point. According to Eq. (76) the degenerate fixed point
possesses a finite fixed point value (v } w)

*
= 8

3=+O(=2). Although the devia-
tions from normal diffusive behaviour only appear in order two-loop, the
positive ' from Eq. (77) demonstrates the system to be also superdiffusive
at the degenerate fixed point.

(ii) Both a ``normal'' and a degenerate fixed point are also observed
in the noncritical model with quenched disorder.(7) While here at the trans-
verse phase transition the situation of two fixed points appears in the ran-
dom potential with equally high mountains and the degenerate fixed point
is described by the model with the random potential with equally deep
valleys, in the noncritical region, however, the situation of a normal and a
degenerate fixed point occurs in the model with unsymmetric random
potential and the degenerate fixed point is described by both the model
with equally high mountains and equally deep valleys, for these latter
models are identical in the noncritical region.

Now we proceed to investigate the normal fixed point (60). For this
fixed point the anomaly-exponent reads

'= 1
5=+O(=2) (63)

At the fixed point, the second characteristic has the form

\� (l )=\l &2' (64)

in analogy to Eq. (40).
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Returning to the dynamic model and again exploiting the renormaliza-
tion group equation at the fixed point, dimensional analysis, and the
invariant scale transformation we obtain the universal scaling behaviour of
the vertex functions in the asymptotic limit

1n~ , n([q | | , q= , |], {= , v
*

, w
*

, *, \, +)

=l &1�2'(n~ +n&2)&1�2n~ (d+5)&1�2n(d&3)+d+5

_1n~ , n \{ q | |

l 2+' ,
q=

l
,

|
l 4= ,

{=

l 2 , v
*

, w
*

, *, \, ++ (65)

Thus, only longitudinal lengths scale anomalously below the upper critical
dimension dc=7. From this equation we derive the scaling form of the
density response function

/(q, t)= f (q2
| | t

1+1�2', q2
=t1�2) (66)

which coincides with the form found for the preceding model. The
positivity of '= 1

5=+O(=2) signifies superdiffusive behaviour below dc=7.
A comparison with the corresponding model without quenched disorder
again shows the quenched disorder to be the reason for the enhanced
spread of fluctuations in the driving force direction in a dimensional inter-
val that is here, however, 5<d<7.

A straightforward extrapolation of the anomaly-exponent into three
dimensions by setting ==4 into the one-loop result gives the approximate
value

'(d=3)= 4
5 (67)

This numerical value is very distinct from the one-loop and two-loop
values for ' in the model with unsymmetric random potential.

We now discuss the case that the transverse noise term with #{0 of
Eq. (15) is generated by coarse graining even in this symmetric random
potential. Then an additional scaling variable #�l , arises in (65). The cross-
over exponent is here ,=2 and it simply reflects the naive dimension of the
coupling constant #, because # itself is invariant under the longitudinal
scale transformation and for dimensional reasons the transverse noise term
with #{0 needs no additional renormalization. Since # is a relevant
variable, for #{0 the system eventually flows to the fixed point of the
model with unsymmetric random potential.
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3.3. Random Potential with Equally Deep Potential Valleys

Having no transverse noise according to Eq. (14) this model is for-
mally obtained from the model with random potential with equally high
mountains by setting the transverse noise coefficient :=0. Then the rele-
vant dynamic functional is here

J[s, s~ ]=| d dr {| dt[s~ s* +*s~ (2=(2=&{=)&\2 | |) s+ 1
2*g({ | | s~ ) s2]

&_ _* | dt { | | s~ &
2

= (68)

The dimensions of lengths, fields, and coupling constants as well as the
upper critical dimension dc=7 are as in the latter model. The symmetry
properties of this dynamic functional are the same as in both preceding
models with the exception of the invariant scale transformation. The lack
of the transverse noise term has the consequence that the dynamic func-
tional is invariant under a scale transformation depending on two
parameters

r | | � ;r | | r= � r=

s~ � :s~ s � :&1;&1s (69)

\ � ;2\ g � :;2g _ � :&2;_

Therefore, the combination of coupling constants g2_\&5�2 is the appro-
priate invariant variable in this model and is exactly the product of the
variables being invariant each in the latter model, but not here.

Because of the quenched disorder we again use the transformation to
a quasi-static Hamiltonian

H[., .~ ]=| d dr[.~ (2=(2=&{=)&\2 | | ) .+ 1
2 g({ | | .~ ) .2+_.~ 2 | | .~ ] (70)

Vertex and Gaussian propagator are the same as in both preceding models,
whereas the Gaussian correlator reads

Cq =
2_q2

| |

[q2
=(q2

=+{=)+\q2
| |]

2 (71)
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As in the previous model 11, 1 , 12, 0 , and 11, 2 are primitively divergent.
We have computed them in the lowest nonvanishing order, i.e., we have
performed a one-loop calculation for 12, 0 and 11, 2 and a two-loop calcula-
tion for 11, 1 . The two-loop calculation involves similar integrals as in the
model with unsymmetric random potential and has also been performed
with the help of inverse Mellin transformation (cf. Appendix).

In dimensional regularization we obtain the primitively divergent
vertex functions, up to higher order terms in q and ==dc&d

11 1, 1(q)=q2
=(q2

=+{=)+\# q2
| |&4

B2
=

=2

g# 4_# 2

\# 4 q2
| | {

&=
= (0&0.001799=)

11 2, 0(q)=&2_# q2
| |&

1
4

B=

=
g# 2_# 2

\# 5�2 q2
| | {

&=�2
= (72)

11 1, 2(q)=ig# q | |&i
1
4

B=

=
g# 3_#
\# 5�2 q | | {&=�2

=

where B= is defined by Eq. (52). The same redefinition of the coupling
constants as in Eq. (53) absorbs these divergences and yields in minimal
subtraction

Z\=1&0.007196
v2

=
+O(v3)

Z_=1&
1
8

v
=
+O(v2) (73)

Zu=1+
1
4

v
=
+O(v2)

where v :=B=u2_\&5�2 is the dimensionless renormalized variable of the
model. This variable is invariant under the longitudinal scale transforma-
tion (Eq. (69)) and is the product of v and w in the latter model, but it will
here merely be denoted by v for simplicity.

The renormalization group equation reads

_;v
�
�v

+\`\
�

�\
+_`_

�
�_

++
�

�+& 1n~ , n([q | | , q=], {= , v, \, _, +)=0 (74)
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with the Wilson parameter functions

;v :=+
�v
�+ } 0 =&v _=&

3
8

v+O(v2)&
`_ :=+

� ln _
�+ }0 =&

1
8

v+O(v2) (75)

`\ :=+
� ln \

�+ }0 =&0.01439v2+O(v3)

only depending on v.
The infrared stable fixed point, being a zero of ;v , is found at

v
*

= 8
3=+O(=2) (76)

Hence we obtain the anomaly-exponent

'=0.0512=2+O(=3) (77)

The characteristics of the renormalization group equation are defined by
Eq. (35) and an additional equation for _� (l ) that has the same structure as
the equation for \� (l ). At the fixed point the solutions for these flow equa-
tions read

\� (l )=\l &2' _� (l )=_l `_* (78)

where

`_* :=`_(v
*

)=&1
3=+O(=2) (79)

Returning to the dynamic model and combining the renormalization group
equation at the fixed point, dimensional analysis, and the invariant
longitudinal scale transformation we obtain the universal scaling behaviour
of the vertex functions in the asymptotic limit

1n~ , n([q | | , q= , |], {= , v
*

, *, \, _, +)

=l &'(&1+3�2n&1�2n~ )+1�2`_*(n~ &n)&1�2n~ (d+5)&1�2n(d&3)+d+5

_1n~ , n \{ q | |

l 2+' ,
q=

l
,

|
l 4= ,

{=

l 2 , v
*

, *, \, _, ++ (80)
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We again see that only longitudinal lengths scale anomalously. In contrast
to both preceding models there is here an additional exponent `_* appearing
in the global l-factor. As this exponent is cancelled for 11, 1 , the density
response function nevertheless has the scaling form

/(q, t)= f (q2
| | t

1+1�2', q2
=t1�2) (81)

in analogy to both preceding models. As the anomaly-exponent '=
0.0512=2+O(=3) is positive and the upper critical dimension dc=7 is the
same as in the preceding model, all statements concerning superdiffusion
and speeding-up of fluctuations by quenched disorder are here also valid.

The straightforward extrapolation of ' from dc=7 to d=3 by setting
==4 produces the approximative value

'(d=3)=0.82 (82)

This numerical value is close to the one-loop value for ' in d=3 in the
model with random potential with equally high mountains, but is very far
from the one-loop and two-loop values in the model with unsymmetric
random potential.

We now investigate the possibility that even in this symmetric random
potential transverse noise terms are produced by coarse graining. First, we
consider the case that transverse noise proportional to : � d dr[* � dt 2=s~ ]2

is generated. Then we are in the situation of the preceding model. If : is
small the system is in the region of attraction of the degenerate fixed point
discussed in this section. This implies that the transverse noise vanishes
under the renormalization flow and the results of this section remain valid.

Second, if transverse noise proportional to # � d dr[* � dt 2=s~ ]2 is
produced, an additional scaling variable #�l , arises in (80). Due to dimen-
sional reasons, this relevant operator needs no additional renormalization.
The invariant scale transformation according to Eq. (69) implies # �
;&1:&2#. Thus, the crossover exponent is related to the exponents ' and
`_* by ,=2+2'&`_* . For #{0 the system eventually flows to the fixed
point of the model with unsymmetric random potential, because # is a rele-
vant variable.

4. LONGITUDINAL PHASE TRANSITION

The three different realizations of the random potential I�III described
in Section 2 converge to a single model in the region of the longitudinal
phase transition as is sketched in the following.
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For the three realizations of the random potential the dynamic func-
tional still containing many irrelevant terms is given by Eq. (15) and by
Eq. (45) with :{0 and :=0, respectively. The longitudinal phase transi-
tion is characterized by { | | � 0 and finite {= . The external scale +2 here
measures small { | | . Comparing the leading gradient terms in driving force
direction (t*s~ \2 | | } | | 2 | | s) and transverse direction (t*s~ {= 2=s) we find
for length scales

r | |t+&1 r=t+&2 (83)

As the dynamic functional is dimensionless the coupling constants of the
transverse noise scale as #t+&2, :t+&6, i.e., only the longitudinal noise
is relevant. Hence, only a single model is required to describe the
longitudinal phase transition, independent of the kind of the random
potential. Further the dimensions of fields and the other coupling constants
are

*tt+&4 st+d&(7�2) s~ t+d+(5�2)

}=t+&4 }t+&2 _t+0 (84)

gt+(13�2)&d

indicating that }= and } are irrelevant and that

dc=6.5 (85)

is the upper critical dimension of this model.
After a suitable scale change of fields and lengths the relevant dynamic

functional for the longitudinal phase transition is

J[s, s~ ]=| d dr {| dt[s~ s* +*s~ (&2=+\2 | |(\2 | |&{ | |)) s+ 1
2*g({ | | s~ ) s2]

&_ _* | dt { | | s~ &
2

= (86)

The symmetry properties are the same as in the last model of Section 3
inclusively the invariant longitudinal scale transformation, because trans-
verse noise exists in neither model. As a consequence g2_\&5�2 is the
appropriate invariant variable of this model.
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Due to the quenched disorder, we transform to a quasistatic
Hamiltonian

H[., .~ ]=| d dr[.~ (&2=+\2 | |(\2 | |&{ | |)) .+ 1
2 g({ | | .~ ) .2+_.~ 2 | | .~ ]

(87)

From this equation we directly read off the elements of perturbation
theory, i.e., the vertex &igq | | and the Gaussian propagator and correlator

Gq=
1

q2
=+\q2

| |(\q2
| |+{ | |)

(88)

Cq=
2_q2

| |

[q2
=+\q2

| |(\q2
| | +{ | |)]2

The vertex functions 11, 1 , 12, 0 , and 11, 2 are primitively divergent. The
singular parts of 11, 1 are proportional to q4

| | and q2
|| , the singular parts of

12, 0 and 11, 2 are proportional to q2
| | and q | | , respectively.

In a one-loop calculation we obtain the primitively divergent
regularized vertex functions in bare quantities up to higher orders in q and
==dc&d

11 1, 1(q)=q2
=+\# q2

| |(\# q2
| |+{# | |)+

C=

=
g# 2_#
\# 3�2 q2

| | {#
&=
| | \1

6
\# q2

| | +0 } {# | | +
11 2, 0(q)=&2_# q2

| |&
1
6

C=

=
g# 2_# 2

\# 5�2 q2
| | {#

&=
| | (89)

11 1, 2(q)=ig# q | |&i
1
6

C=

=
g# 3_#
\# 5�2 q | | {# &=

| |

where

C==
1

(2?)d Od&11 (1+=) 1 \11&2=
4 + 1 \5&2=

4 + (90)

is a suitably chosen =-dependent factor. These divergences are absorbed in
the redefinition of the coupling constants

\# =Z\\ {# | |=Z{ | |
{ | | _# =Z__ g# =+=Zuu (91)
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In minimal subtraction we obtain the Z-factors as a function of the dimen-
sionless renormalized invariant variable v :=C=u2_\&5�2

Z\=1&
1

12
v
=
+O(v2)

Z{| |
=1+

1
12

v
=
+O(v2)

(92)

Z_=1&
1

12
v
=
+O(v2)

Zu=1+
1
6

v
=
+O(v2)

Here, the renormalization group equation is of the form

_;v
�
�v

+\`\
�

�\
+_`_

�
�_

+}{ | |

�
�{ | |

++
�

�+& 1n~ , n([q | | , q=], { | | , v, \, _, +)=0

(93)

with the Wilson functions

;v :=+
�v
�+ }0 =&2v _=&

11
24

v+O(v2)&
`_ :=+

� ln _
�+ } 0 =&

1
6

v+O(v2)

(94)

`\ :=+
� ln \

�+ } 0 =&
1
6

v+O(v2)

} :=+
� ln { | |

�+ } 0 =
1
6

v+O(v2)

In addition to the flow equations for v� (l ), \� (l ), _� (l ), and +� (l ) being of the
same form as in the preceding model there is a flow equation for {� | |(l ) that
reads

d
dl

ln {� | |(l )=}(v� (l )) (95)
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In the scaling limit l<<1 that corresponds to the relations

}q | |

+ }<<1 } q=

+2 }<<1 } { | |

+2 }<<1 (96)

v� (l ) flows to an infrared stable fixed point v
*

which is directly obtained as
a zero of ;v

v
*

= 24
11=+O(=2) (97)

At the fixed point the solutions of the flow equations are given by Eq. (78)
and by {� | |(l )={ | | l }* with }

*
:=}(v

*
). Inserting the fixed point value for v

*
into `\ we find the anomaly-exponent

'= 2
11=+O(=2) (98)

The fixed point values of the other parameter functions are

`_*=& 4
11 =+O(=2) }

*
= 4

11 =+O(=2) (99)

Returning to the dynamic model and combining the solutions of the renor-
malization group equation at the fixed point with a dimensional analysis
and the invariant scale transformation we finally arrive at the universal
scaling behaviour of the vertex functions at the longitudinal phase transi-
tion

1n~ , n([q | | , q= , |], { | | , v
*

, *, \, _, +)

=l &'(&1+3�2n&1�2n~ )+1�2`_*(n~ &n)&1�2n~ (2d+5)&1�2n(2d&7)+2d+3

_1n~ , n \{ q | |

l 1+' ,
q=

l 2 ,
|
l 4= ,

{ | |

l 2&}*
, v

*
, *, \, _, ++ (100)

In addition to longitudinal lengths the critical parameter { | | also exhibits
anomalous scaling behaviour. In analogy to the models in Section 3 we
derive the scaling form of the density response function

/(q, t)= f (q2
| | t

1�2(1+'), q2
=t) (101)

While the system is normally diffusive with respect to the transverse direc-
tions, in the critical longitudinal direction typical length squares scale for
long times as

(r2
| |)tt1�2(1+') (102)
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i.e., in comparison to the naively critical t1�2 (corresponding to the naive
dynamical critical exponent z=4 from model B(23)) the spread of fluctuations
in the driving force direction is enhanced, due to the positive '= 2

11=+O(=2).
A comparison with the corresponding model for the longitudinal phase
transition in a system without quenched disorder(5) shows the surprising
result that the longitudinal phase transition is here continuous, evidenced
by the existence of an infrared stable fixed point, whereas in the model
without quenched disorder there is no infrared stable fixed point.

5. SUMMARY AND OUTLOOK

We have analyzed the transverse and longitudinal phase transition in
uniformly driven diffusive systems with quenched disorder. These systems
show a wide variety of possible scenarios, because the symmetry properties
of the random potential are an additional distinguishing feature to which
universality class a model belongs. In the region of the transverse phase
transition the three different random potentials I�III (Fig. 2) actually define
three different models and in the noncritical region they still define two dif-
ferent models all of which are part of different universality classes.

Together with earlier investigations the renormalization group studies
of an entire model class are hereby completed. This model class includes
the driven diffusive systems with and without quenched disorder both in
the critical regions of the transverse and longitudinal phase transition and
in the noncritical region. Fig. 3 gives a graphical overview of the model
class, where the single models are ordered chronologically from left to the
right. The models in an ordered substrate, (4�6) i.e., without quenched disor-
der, had been studied prior to this work for all three regions of the phase
diagram mentioned above. The models for a system with quenched disor-
der in the noncritical region(7) had also been investigated. The other
models of Fig. 3 have been studied in the present paper.

The upper critical dimension dc is different from model to model and
varies from 2 to 9. Below dc , the vertex functions being typical statistical
quantities of such systems show universal anomalous scaling behaviour on
large length and time scales. The deviation from pure diffusive behaviour
is characterized by the anomaly-exponent '. It indicates how strongly
longitudinal lengths scale anomalously. In Fig. 3 the result for ' in the
highest calculated loop order is given for every model. Note that, due to
Galilean invariance, ' is even exact in all models without quenched disorder.

We emphasize the following results:
In all models of this model class (except for the longitudinal phase

transition in a system without quenched disorder) the anomaly-exponent '
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Fig. 3. Model class of driven diffusive systems with conserving noise.

is positive implying superdiffusive spreading of density fluctuations in the
driving force direction.

A model with quenched disorder always has a higher upper critical
dimension than the corresponding model without quenched disorder. Due
to the field theoretic results, in the dimension interval between these two
upper critical dimensions the quenched disorder is the reason for superdif-
fusive spread of density fluctuations in the high temperature region and at
the transverse phase transition, respectively. Notice that the anomalous dif-
fusion of fluctuations is not directly connected with the behaviour of trans-
port coefficients relating the mean current to the mean density, because a
fluctuation-dissipation theorem (Einstein relation) does not hold in this
strong nonequilibrium situation with quenched disorder. Within this model
class we have not found a qualitative argument why disorder generates
superdiffusion. We mention, however, a study of a one dimensional driven
lattice gas(24, 25) where quenched disorder is not, as here, spatially fixed, but
associated with moving particles. The authors found a superdiffusive spread
of a jam behind the slowest particle and a superdiffusive spread of free
spacing in front of it. Whether this situation can be transferred to our
models by identifying the deepest potential valley and the highest potential
mountain, respectively, with the slowest particle, should be a topic of
further investigations, especially Monte Carlo simulations.

For the longitudinal phase transition there is no uniform statement.
In the model without quenched disorder(5) no infrared stable fixed point has
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been found and some analytic arguments point to a discontinuous phase
transition, whereas an according two dimensional lattice gas demonstrates
a continuous phase transition in Monte Carlo simulations.(26) In the model
with quenched disorder studied here, however, we find an infrared stable
fixed point and thus a continuous longitudinal phase transition.

Despite the partially high upper critical dimensions it appears that the
anomaly-exponent (when existing) may be extrapolated quite accurately
into low dimensions. Two observations lend support to this procedure:
first, the two-loop correction to ' the critical transverse model from Sec-
tion 3.1 is small and second, the coefficients of ' are small in all models.

For the two-loop calculation in critical models with quenched disorder
a new technique has been developed enabling us to manipulate mixed
q4-propagators and -correlators. This technique is based on an inverse
Mellin transformation and is described for one model at the transverse
phase transition in the Appendix. This method is applicable to all critical
models with quenched disorder of this model class, but has only been per-
formed for two models (Sections 3.1 and 3.3). Furthermore we expect it to
be useful for two-loop calculations in other physical problems where
q4-propagators are involved. Monte Carlo simulations of two-dimensional
driven diffusive lattice gases without quenched disorder(1, 2, 11, 12) are in
excellent agreement with field theoretic predictions for the transverse phase
transition and the noncritical region.(4�6) For the transverse phase transi-
tion in systems with quenched disorder, however, there is a simulation
study(27) that is, for two reasons, hardly compatible with the models
investigated here by field theory. First, the quenched disorder was there
modelled by randomly blocked sites and not by random potential barriers
between the sites. Second, the concentration of blocked sites is so small
that only the crossover behaviour between a system with and without
quenched disorder was observed. Further, we mention a recent simulation
for a noncritical system with quenched disorder.(28)

It is desirable to compare the field theoretic results obtained here for
the various critical models with corresponding Monte Carlo simulations
that are still to be done. These simulations are a nontrivial challenge,
because besides the average over a huge number of realizations of the
quenched disorder it is to pay attention to the fact that the periodic bound-
ary conditions usually used let pass a particle repeatedly through the
system and let it see the same quenched disorder as before. By this unwan-
ted correlations of the randomness enter into the simulational results that
make it difficult to compare them with the field theoretic results that are
based on the assumption of uncorrelated disorder. Therefore Monte Carlo
simulations of driven diffusive systems with open boundaries already done
for systems without quenched disorder(29) seem to be more appropriate.
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We finally remark that we have extended the model class investigated
here in the way that we allow for random particle sources and drains in the
diffusive systems. The noncritical model without quenched disorder with
such a particle nonconserving randomness had already been studied.(13, 30)

Moreover we have analyzed the influence of nonconserving noise onto the
critical behaviour in systems with and without quenched disorder which is
demonstrated in a paper soon to be published.(14)

APPENDIX. TWO-LOOP CALCULATION OF 11, 1

In the Appendix we explicitly show the two-loop calculation for the
model that describes the transverse phase transition in an unsymmetric
random potential (cf. Section 3.1). The graphical elements of the diagram-
matic perturbation expansion are shown in Fig. 4 directly for the quasi-
static model which is here used to facilitate the calculation. The .~ -legs are
indicated by an arrow and the q | | of the vertex by a dash perpendicular to
the propagator line. The mathematical expressions for the graphical
elements are given by Eq. (29).

In this model we have to calculate the primitively divergent vertex
functions 11, 1 and 11, 2 . There are eight two-loop diagrams contributing to
11, 1 (Fig. 5) and 25 two-loop diagrams contributing to 11, 2 each of which
obeys causality that forbids closed propagator loops. Momentum conserva-
tion demands that at each vertex the sum over all wave vectors is zero.
Evaluation of these diagrams requires integration over all internal wave
vectors.

While the one-loop calculation is easy to perform by standard
methods, the two-loop calculation involving mixed q4-propagators requires
more sophisticated tools and has not been described in literature. We intro-
duce a technique that is based on an inverse Mellin transformation.

For 11, 1 we have to compute the diagrams B (1, 1)
1 to B (1, 1)

8 from Fig. 5.
We denote the external momentum by q and the internal ones to be
integrated over by p and k. As 11, 1 is quadratically divergent because of
CP-symmetry and dimensional reasons and the external .~ already provides

Fig. 4. The graphical elements of perturbation theory in the quasi-static model: (a) vertex,
(b) Gaussian propagator, and (c) Gaussian correlator.
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Fig. 5. All two-loop diagrams of 11, 1 obeying causality. The symmetry factor of B (1, 1)
7 is 1

2 ,
whereas it is 1 for all other diagrams.

a factor q | | , the parts of the integrands being proportional to q | | contain all
singularities. Therefore, the integrands are first expanded with respect to
the external momentum q | | to first order. For simplicity, we now substitute
\1�2p | | � p | | , \1�2k | | � k | | and from now on we omit the superscript ``%'' to
characterize unrenormalized quantities.

In the next step all even powers of p | | and k | | in the numerator of the
integrands are written as p2

| |=[p2
=(p2

=+{=)+ p2
| |]&p2

=(p2
=+{=) (k2

| | anal-
ogously). The first termed of the right hand side cancels against factors in
the denominator. For all odd powers the half of the integrand is reflected
with respect to k | | . This step reduces the superficial degree of divergence of
the p- and k-integration by 2. It is allowed because the integration runs
over the whole k | | -axis.

Then all integrals are reduced to the two types of integrals

I(:, ;, #, $, +, &)

:=|
p

p2:
=

[p2
=(p2

=+{=)+ p2
| |]

; |
k

(p=&k=)2#

[(p=&k=)4+( p | |&k | | )
2]$

k2+
=

[k4
=+k2

| |]
&
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F(A; :, ;, #, $, +, &)

:=|
p

pA
| | p

2:
=

[p2
=(p2

=+{=)+ p2
| |]

; |
k

k | | k
2+
=

[k4
=+k2

| |]
&

__ (p=&k=)2#

[(p=&k=)4+( p | |&k | |)
2]$&

(p=&k=)2#

[(p=&k=)4+( p | |+k | |)
2]$&

(103)

the arguments of which can be 0, 1, 2,... .
As the integrands are already expanded with respect to q | | , the whole

integration over p and k is at most logarithmically divergent. The integra-
tion variables are chosen such that the p-subintegration is always
primitively convergent, i.e., the naive dimension $p of this integration
(measured in powers of the external momentum scale +) is negative. In the
integrals of both types the k-integration is at most logarithmically
divergent.

Due to these naive dimensions of the p-, k- and the whole integration
it is possible (and necessary for the following calculus) to set {==0 in the
k-integration, because the {={0-parts only provide convergent contribu-
tions. The sum of the two-loop diagrams for 11, 1 expressed by the integral
types I and F reads

:
8

i=1

B (1, 1)
i =4

g4

\2 q2
| |[3I(1, 2, 0, 1, 1, 2)&3I(1, 3, 0, 1, 3, 3)

&2I(3, 4, 0, 1, 1, 2)+2I(3, 4, 0, 1, 3, 3)

&2{= I(2, 4, 0, 1, 1, 2)+2{=I(2, 4, 0, 1, 3, 3)

+
1
2

I(0, 2, 1, 2, 1, 2)&
3
2

I(2, 3, 1, 2, 1, 2)+I(4, 4, 1, 2, 1, 2)

&F(3; 1, 4, 0, 1, 1, 3)&
1
2

F(1; 1, 3, 0, 1, 1, 3)

+F(1; 1, 1, 4, 1, 2, 0, 1)] (104)
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By factorizing the q4-denominators in I and F into transverse and
longitudinal parts we are in the position to apply the successful methods
that are used for q2-propagators and -correlators. This factorization is done
by the Mellin transformation. We demonstrate the method for the integral
type I in detail. The calculation of F goes analogously.

The Mellin transformation of the function (a+x)&: is

|
�

0
dx xt&1(a+x)&:=

1 (t) 1 (:&t)
1 (:)

at&: (105)

where the conditions a>0 and 0<Re(t)<Re(:) must be fulfilled.(31)

The corresponding inverse Mellin transformation

(a+x)&:=|
t0+i�

t0&i�

dt
2?i \

1 (t) 1 (:&t)
1 (:)

at&:+ x&t (106)

where the integration path parallel to the imaginary axis is restricted by
0<t0<Re(:), (31) proves to be the appropriate tool to factorize the
denominators in I.

First we only treat the k-integration of the integral type I (103) and
apply the inverse Mellin transformation to both denominators

Ik :=|
k

(p=&k=)2#

[(p=&k=)4+( p | |&k | |)
2]$

k2+
=

[k4
=+k2

| |]
&

=|
t0+i�

t0&i�

dt
2?i |

s0+i�

s0&i�

ds
2?i

1 (t) 1 ($&t) 1 (s) 1 (&&s)
1 ($) 1 (&)

_|
k

1
[k2

| |]
s [( p | |&k | |)

2] t

1
[k2

=]2(&&s)&+ [(p=&k=)2]2($&t)&# (107)

In the integrand transverse and longitudinal momenta are now separated
and only quadratic. The k-integration can now be performed with the help
of the usual Feynman relations

1
A:=

1
1 (:) |

�

0
ds s:&1e&sA

(108)
1

> i A:i
i

=
1 (� i :i )
> i 1 (:i ) |

1

0
`

i

dxi x:i&1
i

$(� i xi&1)
[� i x iA i]

�i :i
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where 1 (:) is Euler's 1 function. The result reads

Ik =
1
2

Od&1

(2?)d 1 \1
2+ 1 \d&1

2 + |
t0+i�

t0&i�

dt
2?i |

s0+i�

s0&i�

ds
2?i

_
1 (t) 1 ($&t) 1 (s) 1 (&&s)

1 ($) 1 (&)

_
1 (s+t&1�2) 1 (1�2&s) 1 (1�2&t)

1 (s) 1 (t) 1 (1&s&t)

_
1 (2&+2$&+&#&((d&1)�2)&2(s+t))

1 (2(&&s)&+) 1 (2($&t)&#)

_
1 (((d&1)�2)&2(&&s)++) 1 (((d&1)�2)&2($+t)+#)

1 (d&1&2&&2$+++#+2(s+t))

_| p | | |
1&2(s+t) |p= | d&1+4(s+t&&&$)+2(#++) (109)

The k-integral exists under the conditions

2(s0+t0)>1

s0< 1
2 t0< 1

2

4(&+$&(s0+t0))&2(++#)>d&1 (110)

d&1&4(&&s0)+2+>0

d&1&4($&t0)+2#>0

which prevent UV and IR divergences, respectively, at the k | | - and k= -
integration. These conditions restrict the complex integration paths of the
s- and t-integration which are here dependent on the spatial dimension, due
to the dimensional regularization.

The result of the k-integration is according to Eq. (109) proportional
to powers of | p | | | and |p= | with exponents that fire dependent on s, t,
and d. Thus, the remaining p-integration is analogous to the one-loop
problem, up to changed exponents. It is straightforwardly performed and
we obtain for I
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I(:, ;, #, $, +, &)

=Cd
1 (2(;+$+&)&(:+#++)&(d+1))

{2(;+$+&)&(:+#++)&(d+1)
=

_|
t0+i�

t0&i�

dt
2?i |

s0+i�

s0&i�

ds
2?i

1 \2&+2$&+&#&
d&1

2
&2(s+t)+

_1 \s+t&
1
2+ 1 ($&t) 1 (&&s) 1 \1

2
&s+ 1 \1

2
&t+

_
1 (d+s+t+:+#++&;&2$&2&)
1 (d&1&2&&2$+++#+2(s+t))

_
1 (((d&1)�2)&2(&&s)++) 1 (((d&1)�2)&2($&t)+#)

1 (2(&&s)&+) 1 (2($&t)&#)
(111)

where Cd= 1
4 (Od&1�(2?)d )2 [(1 ( 1

2) 1 ((d&1)�2))�(1 (;) 1 ($) 1 (&))] is a
constant that is different for every I and depends on the dimension. The
conditions for the existence of the p-integration are

1&(s0+t0)>0

d+s0+t0+:+#++&;&2$&2&>0 (112)

2(;+$+&)&(:+#++)&(d+1)>0

After the momentum integrations there remain parameter integrations with
respect to the Mellin variables s and t over parallels to the imaginary axis.
The complex integration paths and the spatial dimension d are restricted
by the conditions (110) and (112). With ==9&d we obtain from the first
four inequalities of (110)

1
2

<s0+t0<$+&&
1
2

(#++)&2+
=
4

(113)

where s0< 1
2 , t0< 1

2 . All other conditions are satisfied for all I of Eq. (104),
if 0<=<2.

Since the sum s0+t0 appears in the inequality (113) we transform to
the new integration variables

z :=s+t w := 1
2 (s&t) (114)
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The integration paths are now determined by

1
2

<z0<$+&&
1
2

(#++)&2+
=
4

|w0 |<
1
4

(115)

After this substitution Eq. (111) gives

I(:, ;, #, $, +, &)=Cd
1 (2(;+$+&)&(:+#++)&(d+1))

{2(;+$+&)&(:+#++)&(d+1)
=

_|
z0+i�

z0&i�

dz
2?i |

w0+i�

w0&i�

dw
2?i

1 \2&+2$&+&#&
d&1

2
&2z+

_1 \z&
1
2+ f (z, w; =) (116)

where the abbreviation

f (z, w; =) :=1 \$&
z
2

+w+ 1 \&&
z
2

&w+ 1 \1
2

&
z
2

&w+ 1 \1
2

&
z
2

+w+

_

1 (((8&=)�2)&2(&&(z�2)&w)++)
_1 (((8&=)�2)&2($&(z�2)+w)+#)

1 (2(&&(z�2)&w)&+) 1 (2($&(z�2)+w)&#)

_
1 (9&=+z+:+#++&;&2$&2&)

1 (8&=&2&&2$+++#+2z)
(117)

denotes the part of the integrand that is free of poles.
To extract the divergent parts of I we have to distinguish two cases.

Case 1. The k-integration is primitively convergent.
In this case the parameters satisfy

&+$& 1
2 (#++)=3 (118)

which is true for I(0, 2, 1, 2, 1, 2), I(2, 3, 1, 2, 1, 2), and I(4, 4, 1, 2, 1, 2)
from Eq. (104). According to Eq. (115) this means for the constant z0

which determines the integration path

1
2

<z0<1+
=
4

(119)
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For these I the whole integration over p and k is logarithmically divergent
so that their parameters fulfill the equation

2(;+$+&)&(:+#++)&(d+1)== (120)

Thus, the coefficient 1 (=)=(1�=) 1 (1+=) of the double integral over z and
w (116) contains an =-pole, whereas the double integral itself is convergent,
as the integrand is free of poles even in the limit = � 0 and the real part of
the integration path can be chosen between 1

2 and 1 according to Eq. (119).
The double integral in Eq. (116) can therefore be computed at ==0,
because together with the =-pole as coefficient only convergent contribu-
tions are produced for ={0. The convergence of the double integral is
ensured by the asymptotic behaviour of the 1 function with complex
arguments(32)

lim
| y| � �

|1 (x+iy)| e(?�2) | y| | y| (1�2)&x=(2?)1�2 (121)

Due to the accumulation of 1 functions we are not able to perform the
integrations with respect to z and w analytically. Hence, each of the three
I is computed numerically for ==0.

Case 2. The k-integration is logarithmically divergent.

In this case the parameters are restricted to

&+$& 1
2 (#++)= 5

2 (122)

which is correct for the remaining I from Eq. (104). According to Eq. (115)
the integration path is here restricted by

1
2

<z0<
1
2

+
=
4

(123)

In the limit = � 0 the integration path is trapped by this condition between
the poles of the integrand (116) at z= 1

2 and z= 1
2+=�4. In order to extract

the =-poles the complex integration path is decomposed into two parts (as
shown graphically in Fig. 6): The first part is a line parallel to the
imaginary axis with an arc to the left of the singularity z= 1

2 , while the
second part is a circle around z= 1

2 . The z-integral over the circle gives the
residuum at z= 1

2 .
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Fig. 6. The complex integration path lying between two poles is decomposed into two parts.

This way we obtain from Eq. (116)

I(:, ;, #, $, +, &)

=Cd
1 (2(;+$+&)&(:+#++)&(d+1))

{2(;+$+&)&(:+#++)&(d+1)
=

__|
z$0+i�

z$0+i�

dz
2?i |

w0+i�

w0&i�

dw
2?i

1 \1+
=
2

&2z+ 1 \z&
1
2+ f (z, w; =)

+1 \ =
2+ |

w0+i�

w0&i�

dw
2?i

f \z=
1
2

, w; =+& (124)

Naturally, the integration path of the z-integration is again chosen as a
parallel to the imaginary axis, whose real part z$0 now lies between &1

2 and
1
2 . After the integration path is changed, both the double integral over z
and w and the single integral over w are eventually convergent. Only the
coefficients of the integrals contain the =-poles. For the further calculation
we have again to distinguish two cases.

(a) The whole integration is logarithmically divergent.

This is the case for the integrals I(1, 3, 0, 1, 1, 2), I(1, 3, 0, 1, 3, 3),
I(3, 4, 0, 1, 1, 2), and I(3, 4, 0, 1, 3, 3) from Eq. (104). Their parameters
satisfy Eq. (120) so that in front of the entire bracket there is an =-pole due
to 1 (=).

For every single I the double integral is finally calculated for ==0
numerically and provides the coefficients of simple =-poles. Parts of the
integrand with ={0 lead to convergent contributions and are therefore
omitted.

The coefficient 1 (=) 1 (=�2) of the simple integral, however, contains an
=2-pole.
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Hence, the integrated f (z= 1
2 , w; =) must be expanded with respect to

= up to the first order

f \z=
1
2

, w; =+
=

1 ((19�2)&=+:+#++&;&2$&2&)
1 (9&=&2&&2$+++#)

1 \$&
1
4

+w+
_1 \&&

1
4

&w+ 1 \1
4

&w+ 1 \1
4

+w+
_

1 (((9&=)�2)&2(&&w)++) 1 (((9&=)�2)&2($+w)+#)
1 (2(&&1�4&w)&+) 1 (2($&1�4+w)&#)

=
1 (;&1�2&=)

1 (4&=)
1 \$&

z
2

+w+ 1 \&&
z
2

&w+
_1 \1

2
&

z
2

&w+ 1 \1
2

&
z
2

+w+
__1&

=
2 \9 \2$&

1
2

+2w&#++9 \2&&
1
2

&2w&++++O(=2)&
(125)

where 9(x)=1 $(x)�1 (x) denotes Euler's 9 function and the relations
(120) and (122) have been used. The integral of the zeroth order in =
provides the coefficients of the =2-poles and can even be executed analyti-
cally(32)

|
w0+i�

w0&i�

dx
2?i

1 \$&
1
4

+w+ 1 \&&
1
4

&w+ 1 \1
4

&w+ 1 \1
4

+w+
=

1 ($) 1 ($+&&1�2) 1 (&) 1 (1�2)
1 ($+&)

(126)

The integral of the first order in = yields the coefficients of the =-poles and
is numerically calculated for every single I that belongs to this case 2a).

(b) The whole integration is primitively convergent.

This statement is true for {= I(2, 4, 0, 1, 1, 2) and {= I(2, 4, 0, 1, 3, 3) in
Eq. (104). Here the parameters have the property

2(;+$+&)&(:+#++)&(d+1)=1+= (127)
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i.e., in front of the brackets in Eq. (124) the coefficient is 1 (1+=) and con-
sequently there is no =-pole.

Therefore the double integral needs not to be computed, as it only
leads to convergent contributions. The simple integral can be evaluated at
==0 because the coefficient contains only a simple =-pole. Due to the rela-
tion (122) that is also valid here, the simple integral is reduced to the one
already solved in Eq. (126) analytically.

Now all integrals of type I from Eq. (104) have been calculated. The
way to solve the integrals of type F is step by step analogous to the method
presented for type I. F(3; 1, 4, 0, 1, 1, 3) and F(1; 1, 3, 0, 1, 1, 3) from
Eq. (104) belong to case 1, whereas F(1; 1, 4, 1, 2, 0, 1) belongs to case 2a).

Finally we present the sum of the two-loop diagrams for 11, 1 up to
convergent parts (cf. (30))

:
8

i=1

B (1, 1)
i =4

g4

\2 q2
| | A

2
=

{&=
=

=2 \ 1
18

&0.01199=+ (128)

The 25 two-loop diagrams of the primitively divergent 11, 2 again only lead
to integrals of type I and F

:
25

i=1

B (1, 2)
i =&4i

g5

\3 q | |[3I(1, 3, 0, 1, 1, 2)&I(1, 3, 1, 2, 2, 2)

&3I(3, 4, 0, 1, 1, 2)+I(3, 4, 1, 2, 2, 2)&2I(1, 3, 0, 1, 3, 3)

+2I(3, 4, 0, 1, 3, 3)&3{= I(2, 4, 0, 1, 1, 2)+2{=I(2, 4, 0, 1, 3, 3)

+{= I(2, 4, 1, 2, 2, 2)&
1
2

I(0, 2, 1, 2, 1, 2)+I(2, 3, 1, 2, 1, 2)

&
1
2

I(4, 4, 1, 2, 1, 2)&F(3; 1, 4, 0, 1, 1, 3)+F(3; 0, 3, 1, 2, 1, 3)

+2F(3; 1, 5, 1, 2, 0, 1)] (129)

which can be evaluated with the methods demonstrated for 11, 1 . This con-
cludes the two-loop calculation.
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